Fast least-squares polynomial approximation in moving time windows

نویسندگان

  • Erich Fuchs
  • Klaus Donner
چکیده

Only a few time series methods are applicable to signal trend analysis under real-time conditions. The use of orthogonal polynomials for least-squares approximations on discrete data turned out to be very e cient for providing estimators in the time domain. A polynomial extrapolation considering signal trends in a certain time window is obtainable even for high sampling rates. The presented method can be used as a prediction algorithm, e.g. in threshold monitoring systems, or as a trend correction possibility preparing the analysis of the remaining signal. In the theoretical derivation, the recursive computation of orthogonal polynomials allows the development of these fast algorithms for least-squares approximations in moving time windows.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A meshless discrete Galerkin method for solving the universe evolution differential equations based on the moving least squares approximation

In terms of observational data, there are some problems in the standard Big Bang cosmological model. Inflation era, early accelerated phase of the evolution of the universe, can successfully solve these problems. The inflation epoch can be explained by scalar inflaton field. The evolution of this field is presented by a non-linear differential equation. This equation is considered in FLRW model...

متن کامل

A New Technique for Image Zooming Based on the Moving Least Squares

In this paper, a new method for gray-scale image and color zooming algorithm based on their local information is offered. In the proposed method, the unknown values of the new pixels on the image are computed by Moving Least Square (MLS) approximation based on both the quadratic spline and Gaussian-type weight functions. The numerical results showed that this method is more preferable to biline...

متن کامل

Optimal Pareto Parametric Analysis of Two Dimensional Steady-State Heat Conduction Problems by MLPG Method

Numerical solutions obtained by the Meshless Local Petrov-Galerkin (MLPG) method are presented for two dimensional steady-state heat conduction problems. The MLPG method is a truly meshless approach, and neither the nodal connectivity nor the background mesh is required for solving the initial-boundary-value problem. The penalty method is adopted to efficiently enforce the essential boundary co...

متن کامل

The approximation power of moving least-squares

A general method for near-best approximations to functionals on Rd, using scattered-data information is discussed. The method is actually the moving least-squares method, presented by the Backus-Gilbert approach. It is shown that the method works very well for interpolation, smoothing and derivatives’ approximations. For the interpolation problem this approach gives Mclain’s method. The method ...

متن کامل

Dual Bases and Discrete Reproducing Kernels: A Unified Framework for RBF and MLS Approximation

Moving least squares (MLS) and radial basis function (RBF) methods play a central role in multivariate approximation theory. In this paper we provide a unified framework for both RBF and MLS approximation. This framework turns out to be a linearly constrained quadratic minimization problem. We show that RBF approximation can be considered as a special case of MLS approximation. This sheds new l...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1997